THE CONDENSER PRINCIPLE AND THE EFFECTIVE RESISTANCE ON A NETWORK

E. BENEDITO, A. CARMONA AND A.M. ENCINAS

Notation used throughout the poster:

- $\Gamma=(V,E)$ is a network, with $|V|=n$ and $x \mapsto \Sigma_{y \in V}(x,y)$
- $F=\{(x,y) \in E \mid x \in F \land y \in F\}$ for some $x \in F$
- $dF \leftarrow (x,y) \in E \mid x \in F \land y \in E \setminus F \}$ edge boundary
- ν is the energy of u
- $u \in M(F)$ is a positive measure on F
- $S(u)|y \in E^{\nu}$ is the support of ν
- ν^F is the equilibrium measure for F
- ν_t is the equilibrium measure for F using all weights ν.

Potential Theory

$L : V \mapsto V \to R$ is a symmetric kernel verifying:
- Energy principle: L is strictly positive definite on $|x \in E^2, \nu|=0$
- Maximum principle: max $x \in E \mapsto L(x)(\nu) \leq \max x \in E(|x \in E, \nu(x)|\nu|y < \nu(x))$

PROPOSITION 1.

L verifies the equilibrium principle

$\forall F \subset \subset \subset \subset$, there exists $\nu \in \mathcal{E}(F)$ such that

$L \nu = \nu \in M(F)$

Moreover $S(u)|y \in E^{\nu}$ is the equilibrium measure on F.

Hitting Time

Definition:

The hitting time $H_{x}(x)$ is the expected number of steps for a reversible Markov chain before y is reached when started from state x.

State equation

$\Delta H_{x}(y) = 1 \text{ if } x \in F$

$H_{x}(y) = 0$

Poisson equation

$H_{x}(y) = \frac{1}{2} \sum_{z \in F} \frac{\nu^F(\nu)}{\nu^F} \nu |y \in E |z$

the unique solution such that $H_{x}(y) = 0$

Explicit expression of $H_{x}(y)$

$H_{x}(y) = \frac{1}{2} \sum_{z \in F} \frac{\nu^F(\nu)}{\nu^F} \nu |y \in E |z$

Regular graphs

$H_{x}(y) = \nu^F(y)$

SOME EXAMPLES OF HITTING TIMES COMPUTED BY HAND

Distance-regular graph

Homogeneous tree of degree $k > 1$ and depthness I

THE EFFECTIVE RESISTANCE

Definitions:

- The effective conductance between a and b, C_{ab}, is the value of the current from a to b if a and b are set at potential difference 1

- The effective resistance between a and b is $R_{ab} = C_{ab}^{-1}$

- The escape probability, P_{out}, is the probability, starting at a, that a random walk reaches b before returning a, i.e., $P_{out} = C_{ab}$

Equivalent state equation

$L \nu = \nu \in M(F)$

$\nu |y \in E |\nu|y \leq |\nu|y - \nu(\nu)\nu|y \leq \nu(\nu)$

where T is the Laplacian of T such that $T_{uu} = L_{uu}$ on F and $T_{uu} = \partial_{uu}$ on D

$C_{ab} = R_{ab}^{-1}$ and $\nu \mapsto \sum \frac{\nu^F(\nu)}{\nu^F}$

REFERENCES

E. Bendito, A. Carmona and A.M. Encinas, Solving Dirichlet and Poisson problems on graphs by means of equilibrium measures, Submitted to Combinatorica.