The M–property for distance–regular graphs

E. Bendito Á. Carmona A.M. Encinas M.Mitjana

Universitat Politècnica de Catalunya, Barcelona

margarida.mitjana@upc.edu
M-matrix

Matrices with **non-positive** off–diagonal and **non-negative** diagonal entries

\[L = kl - A \]

\(k > 0, A \geq 0 \) where diagonal entries of \(A \) are less or equal to \(k \).
M-matrix

Matrices with non–positive off–diagonal and non–negative diagonal entries

\[L = kI - A \]

\(k > 0, A \geq 0 \) where diagonal entries of \(A \) are less or equal to \(k \).

- Finite difference methods for solving PDE.
- Growth models in economics.
- Markov processes in probability and statistics.
M-matrix

Matrices with **non-positive** off–diagonal and **non-negative** diagonal entries

\[L = kl - A \]

$k > 0$, $A \geq 0$ where diagonal entries of A are less or equal to k.

- Finite difference methods for solving PDE.
- Growth models in economics.
- Markov processes in probability and statistics.
- ...the combinatorial Laplacian of a k-regular graph.
M-matrix

Matrices with **non-positive** off-diagonal and **non-negative** diagonal entries

\[L = kl - A \]

\(k > 0, \ A \geq 0 \) where diagonal entries of \(A \) are less or equal to \(k \).

- Finite difference methods for solving PDE.
- Growth models in economics.
- Markov processes in probability and statistics.
- ...the combinatorial Laplacian of a \(k \)-regular graph.

> If \(k \geq \rho(A) \), then \(L \) is called an **\(M \)-matrix**
Where can find M-matrices?

Symmetric, irreducible M–matrices

- **non–singular** \rightarrow discrete Dirichlet problem \rightarrow its inverse corresponds with the Green operator associated with the boundary value problem.

- **singular** \rightarrow discrete Poisson equation \rightarrow its Moore–Penrose inverse corresponds with the Green operator too.
Where can find M-matrices?

Symmetric, irreducible M–matrices

- **non–singular** \rightarrow discrete Dirichlet problem \rightarrow its inverse corresponds with the Green operator associated with the boundary value problem.

- **singular** \rightarrow discrete Poisson equation \rightarrow its Moore–Penrose inverse corresponds with the Green operator too.

- An irreducible and non–singular M–matrix has inverse with all entries positive.
Where can find M-matrices?

Symmetric, irreducible M–matrices

- **non–singular** \rightarrow discrete Dirichlet problem \rightarrow its inverse corresponds with the Green operator associated with the boundary value problem.

- **singular** \rightarrow discrete Poisson equation \rightarrow its Moore–Penrose inverse corresponds with the Green operator too.

- An irreducible and non–singular M–matrix has inverse with all entries positive.

- An irreducible and singular M–matrix has a generalized
Generalized inverses

X is a **generalized inverse** of matrix A if

- exists for a class of matrices larger than the class of singular matrices
- has some of the properties of the usual inverse
- reduces to the usual inverse when A is nonsingular.
Moore–Penrose inverse

For every finite matrix A there is a unique matrix X satisfying the Penrose equations

\[
AXA = A, \quad (1)
\]
\[
XAX = X, \quad (2)
\]
\[
(AX)^* = AX, \quad (3)
\]
\[
(XA)^* =XA, \quad (4)
\]

where A^* denotes the conjugate transpose of A. Matrix X is commonly known as the Moore–Penrose inverse, and is denoted by A^\dagger.
Preliminaries

Known results

- An irreducible and non-singular M-matrix has inverse with all entries positive.
Preliminaries

Known results

- An irreducible and non–singular M–matrix has inverse with all entries positive.

- An irreducible and singular M–matrix has a generalized inverse which is non–negative.

Explain Green, L^\dagger, Γ^\dagger
The equilibrium measure and the capacity

- The equilibrium measure There exists $\nu^x \in \mathcal{C}(V)$ such that
 \[
 \begin{cases}
 \nu^x(x) = 0 \\
 \nu^x(y) > 0 \quad y \neq x
 \end{cases}
 \]
 and
 \[\mathcal{L}(\nu^x) = 1 - n\varepsilon_x \quad \text{on } V.\]

 ν^x is the equilibrium measure of $V \setminus \{x\}$.

- The capacity is the function $\text{cap} \in \mathcal{C}(V)$ given by
 \[\text{cap}(x) = \sum_{y \in V} \nu^x(y).\]
Theorem

The Moore–Penrose inverse of L is an M–matrix if, and only if, for any $x \in V$

$$\text{cap}(x) \leq n\nu^x(y) \quad \text{for any } y \sim x.$$
Proof

The Green function is given by

$$G(x, y) = \frac{1}{n^2} (\text{cap}(x) - n \nu^x(y)), $$

But, \(\min_{y \in V \setminus \{x\}} \{\nu^x(y)\} = \min_{y \sim x} \{\nu^x(y)\} \), since if the minimum is attained at \(z \not\sim x \),

$$1 = \mathcal{L}(\nu^x)(z) = \sum_{y \in V} c(x, y)(\nu^x(z) - \nu^x(y)) \leq 0.!! $$
Theorem

The network Γ has the M–property iff for any $y \in V$

$$\text{cap}(y) \leq n\nu^{y}(x) \quad \text{for any } x \sim y.$$

In this case, Γ is a subgraph of the subjacent graph of Γ^\dagger.
Let Γ be a distance–regular graph with intersection array

$$\iota(\Gamma) = \{b_0, b_1, \ldots, b_{D-1}; c_1, \ldots, c_D\}.$$

Γ is regular of degree k, and

$$k = b_0, \quad b_D = c_0 = 0, \quad c_1 = 1, \quad a_i + b_i + c_i = k.$$
The intersection array $\iota(\Gamma)$

Properties

i) $k_0 = 1$ and $k_i = \frac{b_0 \cdots b_{i-1}}{c_1 \cdots c_i}$, $i = 1, \ldots, D$.

ii) $n = 1 + k + k_2 + \cdots + k_D$.

iii) $k > b_1 \geq \cdots \geq b_{D-1} \geq 1$.

iv) $1 \leq c_2 \leq \cdots \leq c_D \leq k$.

v) If $i + j \leq D$, then $c_i \leq b_j$ and $k_i \leq k_j$ when, in addition, $i \leq j$.

Notation

$$a_1 = \lambda; \quad c_2 = \mu.$$
Examples

n–Cycle $\iota(C_n) = \{2, 1, \ldots, 1; 1, \ldots, 1, c_D\}$

The Heawood Graph
$\iota(\Gamma) = \{3, 2, 2; 1, 1, 3\}$

The Petersen Graph
$\iota(\Gamma) = \{3, 2; 1, 1\}$
Introduction

The M–property

Distance–regular graphs

Distance–regular graph Γ

(i) Γ is bipartite iff $a_i = 0$, $i = 1, \ldots, D$.

(ii) Γ is antipodal iff $b_i = c_{D-i}$, $i = 0, \ldots, D$, $i \neq \left\lfloor \frac{D}{2} \right\rfloor$

Distance–regular graphs with $k \geq 3$ other than bipartite and antipodal are primitive.
The equilibrium measure of a distance–regular graph

Lemma

Let Γ be a distance–regular graph. Then, for all $x, y \in V$

$$\nu^x(y) = \frac{1}{\sum_{j=0}^{d(x,y)-1} \frac{1}{k_j b_j} \left(\sum_{i=j+1}^{D} k_i \right)}$$

$$\text{cap}(x) = \frac{1}{\sum_{j=0}^{D-1} \frac{1}{k_j b_j} \left(\sum_{i=j+1}^{D} k_i \right)^2}.$$
\(\Gamma \) has the \(M \)--property

Proposition

A distance--regular graph \(\Gamma \) has the \(M \)--property iff

\[
\sum_{j=1}^{D-1} \frac{1}{k_j b_j} \left(\sum_{i=j+1}^{D} k_i \right)^2 \leq \frac{n-1}{k}.
\]

Corollary

If \(\Gamma \) has the \(M \)--property and \(D \geq 2 \), then

\[
\lambda \leq 3k - \frac{k^2}{n-1} - n,
\]

and hence \(n < 3k \).
If the \(n \)–cycle \(C_n \) has the \(M \)–property \(\Rightarrow n < 6 \)

- \(D = 1 \Rightarrow n = 3 \)
- \(D = 2 \Rightarrow n = 4, 5 \).
If the \(n \)-cycle \(C_n \) has the \(M \)-property \(\Rightarrow n < 6 \)

- \(D = 1 \Rightarrow n = 3 \)
- \(D = 2 \Rightarrow n = 4, 5. \)

The Moore–Penrose inverse of \(C_n \) is

\[
(L^{\dagger})_{ij} = \frac{1}{12n} \left(n^2 - 1 - 6|i - j|(n - |i - j|) \right), \quad i, j = 1, \ldots, n,
\]
The Moore–Penrose inverse of L is a M–matrix

\[
L^\dagger = (g_{ij}) = \begin{pmatrix}
2/5 & 0 & -1/5 & -1/5 & 0 \\
0 & 2/5 & 0 & -1/5 & -1/5 \\
-1/5 & 0 & 2/5 & 0 & -1/5 \\
-1/5 & -1/5 & 0 & 2/5 & 0 \\
0 & -1/5 & -1/5 & 0 & 2/5
\end{pmatrix}
\]
Small diameter

Proposition

If Γ is a distance-regular graph with the M-property, then $D \leq 3$.

Proof.

If $D \geq 4$, then from property $\triangledown(v)$ of the parameters

$$3k < 1 + 3k \leq 1 + k + k_2 + k_3 \leq n,$$

\hfill \square
Proposition

A strongly regular graph with parameters \((n, k, \lambda, \mu)\) has the \(M\)-property iff

\[\mu \geq k - \frac{k^2}{n-1} .\]

Observation

- Every antipodal strongly regular graph has the \(M\)-property.
- The Petersen graph, \((10, 3, 0, 1)\), does not have the \(M\)-property.
Proposition

If Γ is a primitive strongly regular graph, then either Γ or $\bar{\Gamma}$ has the M–property.

The graphs Γ and $\bar{\Gamma}$, both of them, have the M–property iff Γ is a conference graph.
Partial geometries

A *partial geometry with parameters* \(s, t, \alpha \geq 1 \), \(pg(s, t, \alpha) \), *is an incidence structure of points and lines such that*

- every line has \(s + 1 \) points and every point is on \(t + 1 \) lines;
- two distinct lines meet in at most one point;
- given a line and a point not in it, there are exactly \(\alpha \) lines through the point which meet the line.

The number of points of \(pg(s, t, \alpha) \) is \(n = \frac{1}{\alpha}(s + 1)(st + \alpha) \)

The *point graph of* \(pg(s, t, \alpha) \), \(\Gamma \), *has the points as vertices and two vertices are adjacent iff they are collinear.*

\(\Gamma \) is a regular graph with degree \(k = s(t + 1) \).
Partial geometries and strongly regular graphs

Observation

- If $\alpha = s + 1$, the partial geometry is called *Linear space* and its point graph is the complete graph K_n.
- When $\alpha \leq s$, the point graph is a strongly regular graph with parameters $\left(n, s(t + 1), s - 1 + t(\alpha - 1), \alpha(t + 1) \right)$

A strongly regular graph Γ is

- **geometric** if it is the point graph of a partial geometry;
- **pseudo–geometric** if its parameters are $\left(n, s(t + 1), s - 1 + t(\alpha - 1), \alpha(t + 1) \right)$, where $1 \leq \alpha \leq \min\{s, t + 1\}$ and α divides $st(s + 1)$

Not every pseudo–geometric graph is geometric.
Pseudo–geometric graphs and M–property

Corollary

A pseudo–geometric graph Γ with parameters
\[\left(n, s(t + 1), s - 1 + t(\alpha - 1), \alpha(t + 1) \right) \] has the M–property iff
\[\alpha(2ts + t + \alpha) \geq st(s + 1). \]
Study of the point graphs associated to well–known families of partial geometries
Dual Linear Spaces

- \(\alpha = t + 1 \leq s \)
- \(\Gamma \) has the \(M \)-property iff \(s \leq 2(t + 1) \).

When, \(t = 1 \) and \(s = m - 2 \) the corresponding pseudo geometric graph is the *triangular graph* \(T_m \) with parameters \(\left(\binom{m}{2}, 2(m - 2), m - 2, 4 \right) \).

\(T_m \) has the \(M \)-property iff \(m = 4, 5, 6 \).
Transversal Designs and Dual Transversal Designs

- **Transversal Designs:**
 - \(\alpha = s \leq t + 1 \)
 - \(\Gamma \) is the complete multipartite graph \(K_{(s+1)\times(t+1)} \) whose parameters are
 \[
 \left((s + 1)(t + 1), s(t + 1), (s - 1)(t + 1), s(t + 1) \right)
 \]
 - and it has the \(M \)-property.

- **Dual Transversal Designs:**
 - \(\alpha = t \leq s, \ t > 1 \)
 - \(\Gamma \) is the Pseudo–Latin square graph \(PL_{r}(m) \) whose parameters are
 \[
 \left(m^2, r(m - 1), r^2 - 3r + m, r(r - 1) \right)
 \]
 , where \(r = t + 1 \) and \(m = s + 1 \). It has the \(M \)-property iff \(s \leq 2t \).

For \(t = 2 \) it is the line graph of the complete bipartite graph \(K_{m,m} \), also called the squared lattice graph.
Generalized quadrangles

- $\alpha = 1, s > 1$
- Γ is the pseudo-geometric graph

\[
((s + 1)(st + 1), s(t + 1), s - 1, t + 1).
\]

Γ has the M–property iff $t(s^2 - s - 1) \leq 1$ and hence iff $t = 1$ and $s = 2$.

When $t = 1$: *Hamming graph* $H(2, s + 1)$ or *Lattice*.

Notice that the complement of $H(2, s + 1)$ is the pseudo-latin square graph $PL_s(s + 1)$ that satisfies the M–property.
Proper pseudo geometric geometric

(i) Kneser graphs $K(m, 2)$, where $m \geq 6$ is even, in which case $s = \frac{m}{2} - 1$, $t = m - 4$ and $\alpha = \frac{m}{2} - 2$. For arbitrary $m \geq 5$, the Kneser graph $K(m, 2)$ is the graph whose vertices represent the 2–subsets of $\{1, \ldots, m\}$, and where two vertices are connected if and only if they correspond to disjoint subsets. The parameters of the Kneser graph $K(m, 2)$ are $\left(\left(m\right)\binom{m-2}{2}, \left(m-4\right)\binom{m-3}{2}\right)$, that coincide with the parameters of the complement of T_m. Therefore, it has the M–property iff $m \geq 7$ as expected. In addition, $K(m, 2)$ for m odd is an example of strongly regular graph that is not a pseudo geometric graph, which also implies that the complement of a pseudo geometric graph is not necessarily a pseudo geometric graph, see below.

(ii) ...
Questions

- When a strongly regular graph is pseudo geometric?
- When the complement of a pseudo-geometric graph is also pseudo-geometric?